Velg en side

Solceller er på moten

Solceller er på moten

Solcellepanelene har blitt billigere de siste årene, men er ikke mye brukt i Norge – hvorfor ser det ut til at resten av verden har hengt seg på denne fornybare moten?

Den første gangen vi så tegn til det som ligger til grunn for dagens solceller var når Alexandre Emond Becqurel observerte fotovoltaisk effekt, som er etableringen av spenning eller elektrisk strøm i et materiale når det blir utsatt for lys. Det skulle bli så sent som 1950 årene før denne typen strømløsning skulle bli utviklet videre for fullt. Når de som verst holdt på med å komme seg ut i verdensrommet fant de ut at det var nødvendig med enkle energikilder, og da var solceller ypperlige. Den første sattelitten, Vanguard 1, brukte solceller til å drive radioforbindelse med jorda i 1958.

Ikke brukt så mye

Selvom vi ikke ser den helt store bruken av solcelle i Norge, har interessen for det vokst de siste årene Det er mer enn nok av ulike aktører i Norge, men flesteparten ser ut til å rette all teknologien sin mot sollfylte land. Selvom vi i Norge ikke har stekende sol, er det ikke noe som skal tilsi at solceller ikke skal virke her – tvert imot det er rett og slett en myte. I følge forskningsinstutisjonen SINTEF virker solceller godt i nordiske land, og så lenge de ikke er tildekt av snø virker de godt i både kulde og i nedbør.

Solceller som takstein

Ikke alle selskaper fokuserer på utlandet, og en av de som har rettet søkelyset sitt mot Norge er selskapet Otovo,  som produserer solcelletakstein. Disse ser ut som vanlig takstein, du kan få de i forskjellige farger, virker som vanlige solceller og har en ytelsesgaranti på 25 år. Det skal også være et tak som betaler av seg selv og du vil sitte igjen med penger spart på strømregninga tilslutt.

Ypperlig til norske hytter

For mange har solceller blitt en nødvendighet. I Norge er vi heldig fordi vi har vannkraft som energikilde, men flere og flere hustander tar steget til å få installert solceller i husene sine, spesielt i den norske hytteheimen har dette blitt populært. For de av oss som har vært i norske hytter vet at det som oftest hverken er innlagt vann eller elektrisitet. Alt skal være litt primitivt, og være noe annet enn hjemmet. Nettopp på grunn av dette er det vanskelig å få lagt opp strømledninger, så derfor passer solceller ypperlig til norske hytter. Spesielt for de som ikke vil leve primitivt, og vil ha med seg alle sine duppeditter på fjellet.

Las Vegas modellen

De er ikke bare privatpersoner som har fått sansen for solcellepaneler, også ulike bedriftsaktører som vil være bærekraftig og ser muligheten for hvor mye de kan spare. Et godt eksempel på dette er Las Vegas, som siden 2016 har vært mer eller mindre drevet av solceller, med et lite unntak vannkraft som kommer fra ‘Hoover Dam’ og resten fra kullverk i Utah og Wyoming. Til nå har ikke de kommersielle aktørene i byen hatt elektrisitet fra solceller, men både hotellene og kasinoene kommer etter, da de kan spare opptil 25% på strømregningen med å skifte til solenergi. Tenk deg om Las Vegas gamleste Flamingo Hotel & Casino eller om de store kasinoene  som ‘The Mirage’ og ‘Caesers Palace’ kunne ha blitt drevet på bærekraftig energi? Hvor stor forskjell ville ikke det utgjøre både for miljøet og for strømregningen.  I løpet av ‘Summer World Series of Poker’ alene er det tusenvis av profesjonelle spillere som besøker den livlige opplyste byen, og de bruker rundt 5600 megawatt energi per dag. Dette tilsvarer hva et gjennomsnittlig hjem bruker på et år.

Vi kan bli enda bedre

Norge er 97% bærekraftige når det gjelder energiproduksjon, men vi kan bli bedre. Hadde vi bare satset litt mer på solenergi kunne vi også ha råd til å eksportere mer fornybar energi så kunne vi hjelpt andre deler av Europa med miljøet. En annen ting også er når vannmagasinene er tomme får strømprisene opp, har vi solenergi som kilde også vil strømprisene kunne være mer stabile. Vi er gode på miljøet her i landet, så hvorfor skulle ikke vi bli en av de beste i verden på bærekraftig energi?

Continue Reading

Fra komisk støv til fotoner

Fra komisk støv til fotoner

Man antar at solsystemet ble dannet for 4,6 milliarder år siden som et resultat av at skyer av støv og gass ble trukket sammen av tyngdekraft gjennom en prosess som tok minst 50 millioner år. Vi antar at solen vil fortsette i sin nåværende tilstand i minst like lang tid som den har eksistert før den etter en eller flere kraftige ekspansjoner etter nye milliarder av år ender opp som en hvit eller sort dverg.

Solens masse utgjør mer enn 99 % av massen i solsystemet. Solen består i hovedsak av hydrogen og helium, mens bare vel 1,5 % består av tyngre grunnstoff. Dette utgjør likevel mer enn 5 500 ganger jordmassen.

Solens overflate temperatur er vel 5 500 grader Celsius. Solens energiutstråling er et resultat av en kjernefysisk fusjon hvor 620 millioner tonn hydrogen omdannes til helium hvert sekund, mens 4,26 millioner tonn masse omdannes til energi. Den kjernefysiske fusjonen består altså av hydrogen atomer som fusjonerer til helium atomer. Ved denne fusjonen blir det samtidig en liten masse til overs som omdannes til energi. Ettersom forholdet mellom masse og energi tilsvarer kvadratet av lysets hastighet i følge Albert Einsteins berømte masseenergilov vil selv en ubetydelig masse bli omgjort til en enorm mengde energi.

Det kreves meget høy temperatur og høyt trykk for å starte en slik fusjon. Det finner vi i solens indre. Solenergien starter som gammastråling og bruker mange tusen år på å nå solens overflate for så å stråle ut i rommet. Gammastråling er dødelig for alt liv, men i løpet av denne prosessen reduseres energien i strålingen slik at den strålingen som skjer fra solens overflate er mindre skadelig.

Gammastrålingen fra fusjonsreaksjoner absorberes av solplasma og blir utstrålt igjen i vilkårlige retninger. I denne prosessen får strålingen noe lavere energi. Ettersom dette gjentar seg mange tusen ganger tar det lang tid før strålingen når solens overflate. Det er anslått at fotonene kan bruke mellom 10 000 til 170 000 år før de når overflaten. Den solstrålingen som er sluttproduktet består for det meste av synlig lys, men inneholder også infrarød stråling, UV-stråling og til og med litt røntgenstråling. Hver gammastråling i kjernen konverteres til flere millioner fotoner av synlig lys før de forsvinner ut i rommet. Samtidig med gammastrålingen frigjøres det nøytroner. Disse utgjør bare om lag 2 % av energien som frigjøres, og i motsetning til fotoner vekselvirker de sjelden med materie, og nesten alle forlater derfor solen i løpet av kort tid.

All elektromagnetisk stråling inkludert lys er bygd opp av fotoner. På samme måte som alle gjenstander som har masse er bygget opp av atomer, er lysstråling bygget opp av fotoner. Men lyset og fotonene har ikke masse, kun energi.

I tillegg til fotoner sender solen ut elektrisk ladede partikler som elektroner og protoner – populært kalt solvind. Når disse partiklene treffer jordens atmosfære og magnetfelt får vi det fenomenet som kalles nordlys.

Det er altså i solens kjerne at solenergien oppstår. Ved 30 prosent av radien har fusjonen stoppet nesten helt opp. Resten av stjernen varmes opp av energi som føres utover fra kjernen. Energien som produseres av fusjonen i kjernen, beveger seg utover gjennom solens ulike lag til fotosfæren, før den slipper ut i rommet som sollys eller partiklers kinetiske energi.

Mengden av solenergi som treffer Jorden i løpet av ett år, er om lag 15 000 ganger større enn hele verdens årlige energiforbruk. Den totale mengde utstrålt energi fra Solen er mer enn to milliarder ganger større enn energimengden som treffer jordoverflaten.

Solkonstanten er et mål på den mengden energi som solen tilfører jorden per areal enhet som er direkte utsatt for sollys, og tilsvarer omtrent 1 368 W/m². Sollyset på jordens overflate dempes imidlertid av jordens atmosfære slik at mindre effekt treffer overflaten – nærmere 1 000 W/m² ved klar himmel når solen er nær senit.

Continue Reading

Solenergi erobrer stadige nye områder

Solenergi erobrer stadige nye områder

Solen sender ut en ufattelig mengde energi. Selv om en svært liten del av den treffer jorden, ville om lag et kvarter solenergi tilsvare hele menneskehetens energiforbruk i et helt år dersom vi kunne utnytte den effektivt. Solenergien er resultat av det vi kaller atomfusjon. Det vil si at lettere stoffer under stort trykk og med stor hastighet smelter sammen til tyngre stoffer, på solen først og fremst hydrogen til helium. Under en slik fusjon blir det frigjort store mengder energi. Det gjøres stadig forsøk på å etablere kontrollbare atomfusjoner på jorden som energikilde, men så langt har man ikke lykkes.

Blanding av varmeenergi og stråling

Solenergi en blanding av varmeenergi og stråling. Varme og lys er en kombinasjon av elektriske og magnetiske bølger. I en elektromagnetisk bølge varierer forholdet mellom elektrisitet og magnetisme slik at når elektrisiteten øker synker magnetismen og omvendt. Denne bølgen sprer seg i rommet til den treffer noe. Når den treffer jordens magnetfelt, atmosfæren eller selve jordoverflaten blir energibølgen enten reflekter eller absorbert. Der absorbsjonen er størst får vi høye temperaturer som for eksempel ørkenområder, mens snø og is reflekterer mesteparten av solenergien. Forholdet mellom refleksjon og absorbsjon er helt avgjørende for klima på jorden. Hvis menneskelig aktivitet endrer den kjemiske sammensetningen i atmosfæren, endres dette forholdet og vi får menneskeskapte klimaendringer.

Energi fra solen er forutsetning for livet på jorden, men levende organismer er avhengig av den rette energimengden. For lite energi og jorden blir en is planet, for mye energi og jorden kan ende opp som planet Venus hvor overflate temperaturen er på mange hundre grader.

Passiv bruk av solenergien

Passiv bruk av solenergien har blitt nyttet av mennesker så langt tilbake som vi kjenner til. Solenergi tørker vått tøy mange steder den dag i dag. Tørking av planter, fisk og kjøtt har vært og er fortsatt viktige måter for å ta vare på matvarer. Valg av byggematerialer som enten absorberte eller reflekterte sollys var med på å gjøre leveforholdene behagelige.

Mer aktiv bruk av sollyset knyttes til bruk av linser og speil. Allerede i 1774 benyttet Joseph Priestly konsentrering av sollys med en glasslinse til å oppdage grunnstoffet oksygen ved å varme opp og spalte kvikksølvoksid. Det var imidlertid Antoine Lavoisier også kalt den moderne kjemis far som ga det navn og som i sitt laboratorium utviklet en sol-dreven smelteovn som kunne oppnå 1750 grader. I 1882 bygget Augustin Mouchot og Abel Pifre en soldreven trykkpresse som trykket avisa Soleil Journal, eller på norsk Solavisa.

En stund var soldrevne varmtvannsbeholdere populære særlig i USA. Den første ble lansert i 1891, men fortsatt i dag er mange i bruk i de solrike statene i USA.

Solenergi har vært nyttet på mange måter før den ble koblet til moderne teknologi. I arabiske land har man kjøletårn som utnytter at kald luft er tyngre enn varm. Ved å fange oppvarmet varm vind øverste i høye tårn og la den kjøles ved for eksempel å tørke vått tøy produserte man kjøligere luft som kunne slippes ut på gatenivå i husene. Solenergi har blitt benyttet til å fordampe saltvann for å produsere salt. Ved å lede saltvann inn i grunne basseng hvor vannet lett fordamper frigjøres saltet.

Det finnes sol-tørkere hvor sollys slippes gjennom en glassplate og absorberes og dermed avgir varme på en mørk flate. Slik varmes luften. Den varme luften stiger og trekker ny kjøligere luft inn i tørkeren. Varm luften kan ledes gjennom et lukket rom for å tørke grønnsaker eller andre matvarer.

Solenergi blir også brukt til å fordampe saltvann. Ved å kjøle dampen kan den kondenseres og skaffe ferskt drikkevann i områder hvor tilgang på ferskvann er vanskelig.

Continue Reading