Velg en side
Ikke en saga blott med Saga Energy

Ikke en saga blott med Saga Energy

Solenergi er i farta, og selv om ikke Norge er det beste landet å plassere tusenvis av solcellepaneler, så har norsk vitenskap en fremtid innen solenergi. For nå gjør de norske gründerne store kontrakter i utlandet. En av de siste innenfor solenergi er teknologiselskapet Saga Energy. Selskapet hadde som mål i 2015 å selge komplette solcelle-systemer for det skandinaviske markedet. I 2017 er de i ferd med å lande en avtale med det iranske selskapet Amin Energy Developers verdt flere milliarder kroner. Det betyr at norske oppfinnere gjør det skarpt, selv i det fjerne Østen. Og er det noe nordmenn er kjent for i utlandet, er det gode erfaringer med fornybare energikilder. Norge er et av de landene som produserer mest vannkraft i verden. Selv om solenergi er en helt annen teknologi, så har Norge både teknologien, og ikke minst råmaterialene til å utvikle solcellepaneler.

Stor overgang fra norske hytter til iranske boligkomplekser

Iran er en nasjon de fleste vet lite om, men det er ikke unaturlig å tro at landet har rikelig med soldager. Med en befolkning på over 80 millioner innbyggere, er markedet minst 10 ganger større enn Norge. En slik samarbeidsavtale kan også være med på å skaffe Norge enda flere handles-muligheter, selv om forholdet til tider har vært belastet. Både på grunn av atomvåpen og på grunn av menneskerettigheter.

Så en overgang til det iranske markedet vil bli en enorm forbedring dersom avtalen går i boks. Selv om avtalen er vel kjent i de forskjellige medier, bedyrer leder i Saga Energy, Jan Erik Vikeså, at avtalen ikke er underskrevet ennå, og at det ikke stemmer at de skal være snakk om flere milliarder kroner. Hvert fall ikke ennå.

Mangler finansiering

Det kan tyde på at sakene ikke har gått helt som gründerne selv hadde regnet med. For skal de klare å gjennomføre den store avtalen, må de skaffe til veie finansiering. Det er enorme utgifter til produksjon, implementering og administrasjon som ikke kan betales med overskuddet firmaet har lagt seg opp, og derfor trengs en statsgaranti for å få det hele til. Men med systemene til Saga Energy, vil alle husstander selge overskuddsenergi tilbake til nettet og forbrukerne. Dermed kan mange husstander ha et forbruk som ikke vil koste noe, når investeringskostnadene er betalt ned. Selskapet er også eksperter på lagring av energi, selv om dette fortsatt er en av de største utfordringene når det gelder kraftproduksjon.

Kommer finansieringen på plass, vil også iranske husstander nyte godt av den norske teknologien.

Solen står opp i øst

Solen går ned i vest og står opp i øst. Det gjør den alltid og dermed vil faktisk Iran være foran når solcellene fanger solstrålene som igjen omdannes til elektrisk energi man kan bruke til nedkjøling og matlaging. For i de fleste steder i Iran har man ikke varme i panelovner, men tenger aircondition for å kjøle ned boligene. Likevel er det områder i Iran som er like kalde som i Norge, spesielt rundt fjellkjedene Zargos og Alborz, med høyder over 5600 meter. Med enorme sletter kan store solcelleanlegg gi elektrisitet til tusenvis av husstander og samtidig til industrien som oljeproduksjon og landbruk. Dette eventyret kan bli en ny saga mellom to land som har store naturressurser, og som har mulighet til å sette en ny standard mellom de to landene. Kanskje kan Saga Energy og Amin Energy bli to gode samarbeidspartnere, både for freden og for fremtidig energiproduksjon.

Batterier – elektrokjemisk og kjemisk lagring av solenergi

Batterier – elektrokjemisk og kjemisk lagring av solenergi

Solenergi lagres naturlig på mange måter. Helt spesiell er fotosyntesen som omdanner solenergi til plantemateriale. Dette materialet kan under spesielle omstendigheter omdannes til det vi kaller fossilt brennstoff. Dette er ikke annet enn solenergi som er bundet til grunnstoffer (spesielt karbon), gjennom fotosyntesen. Problemet er at når solenergien skal frigjøres igjen vil de kjemiske forbindelsene som energien er bundet til frigjøres i former som er skadelig for miljøet

Det er derfor ønskelig å finne andre måter å lagre solenergi på. En slik måte er elektrokjemisk lagring som ikke medfører frigjøring av skadelige stoffer.

Elektrokjemisk lagring

Et elektrisk batteri er en komponent som har en lagret energi i kjemisk form, og som kan avgi den i elektrisk form. Det finnes en lang type batterier avhengig av hvilke stoffer som inngår i den kjemiske prosessen. Noen er engangsbatterier andre er oppladbare. I denne sammenhengen er det de oppladbare batteriene som er av interesse.

Blybatteriet er den eldste og mest kjente batteritypen. Bilbatterier er nesten uten unntak av denne typen. Blybatteriet baserer seg på en reaksjon mellom bly og svovelsyre. Fordi blybatterier er forholdsvis billige, er de ofte brukt innen nødstrømsforsyning eller til anvendelser med et lite behov for mellomlagring. I Norge brukes dette i kombinasjon med solceller på hytter, båter og andre steder som ikke er tilkoblet kraftnettet.

Et alternativ er nikkel-kadmium batterier. Sammenliknet med blybatterier har nikkel baserte batterier en høyere energitetthet og muligheter for flere ladesykluser. Disse batteriene er også de eneste som fungerer bra ved lave temperaturer (-20 til -40 grader). På grunn av giftigheten til kadmium har bruk av nikkel-kadmium batterier vært forbudt hos forbrukerne siden 2006.

Den batteritypen som har hatt den raskeste utviklingen og som har overtatt for nikkel baserte batterier er litium-ion batterier som de siste årene har gjennomgått en enorm utvikling. Litium-ion batterier har rundt to til tre ganger så høy energitetthet som nikkel-kadmium og fire ganger så høy energitetthet som blybatterier. Lav vekt og høy lagringskapasitet er sentrale egenskaper for batterier, og de nye litium-ion batteriene har vært en forutsetning for utviklingen av dagens el-biler og for ladbare hybridbiler. Den solenergidrevne bilen Nuan 9 som vant World Solar Challenge i 2017 hadde et slikt batteri som ble ladet med solenergi fra solcellepaneler. Det samme gjaldt for flyet Solar Impuls 2, som var det første flyet drevet med solenergi og som var det første av sitt slag til å fly rundt jorden.

Vi skal ikke gå nærmere inn på andre batterityper som metall-luft batterier, natrium-svovelbatterier eller ulike type strømningsbatterier i denne sammenheng selv om de i prinsippet kan lagre solenergi.

Solenergi kan nyttes til å drive kjemiske prosesser som overfører energien til andre kjemiske stoffer.

Hydrogen er det grunnstoffet vi finner mest av i universet, men på jorden finnes det naturlig kun i kombinasjon med andre stoffer. For å frigi hydrogen må det derfor tilføres energi. Hydrogen regnes derfor ikke som en energikilde, men som en energibærer. Elektrisitet og hydrogen har begge som hovedfunksjon å transportere energi fra kilde til forbruker. På jorden er den største forekomsten i form av vann, men hydrogen inngår også i en rekke organiske og uorganiske forbindelser som for eksempel olje, naturgass, kull, planter og metalliske forbindelser. Det frigis 3 ganger mer energi dersom én kg hydrogen får reagere med oksygen. enn ved forbrenning av én kg bensin, diesel eller fyringsolje. Produktet fra reaksjonen mellom hydrogen og oksygen er vann.

Ved hjelp av solvarme kan man splitte sinkoksid til ren sink og fremstille hydrogen. Ved å la sinken reagere med vann til sinkoksid og hydrogen. På denne måten kan solenergien overføres til hydrogenet.