Solceller
Man antar at solsystemet ble dannet for 4,6 milliarder år siden som et resultat av at skyer av støv og gass ble trukket sammen av tyngdekraft gjennom en prosess som tok minst 50 millioner år. Vi antar at solen vil fortsette i sin nåværende tilstand i minst like lang tid som den har eksistert før den etter en eller flere kraftige ekspansjoner etter nye milliarder av år ender opp som en hvit eller sort dverg.
Solens masse utgjør mer enn 99 % av massen i solsystemet. Solen består i hovedsak av hydrogen og helium, mens bare vel 1,5 % består av tyngre grunnstoff. Dette utgjør likevel mer enn 5 500 ganger jordmassen.
Solens overflate temperatur er vel 5 500 grader Celsius. Solens energiutstråling er et resultat av en kjernefysisk fusjon hvor 620 millioner tonn hydrogen omdannes til helium hvert sekund, mens 4,26 millioner tonn masse omdannes til energi. Den kjernefysiske fusjonen består altså av hydrogen atomer som fusjonerer til helium atomer. Ved denne fusjonen blir det samtidig en liten masse til overs som omdannes til energi. Ettersom forholdet mellom masse og energi tilsvarer kvadratet av lysets hastighet i følge Albert Einsteins berømte masseenergilov vil selv en ubetydelig masse bli omgjort til en enorm mengde energi.
Det kreves meget høy temperatur og høyt trykk for å starte en slik fusjon. Det finner vi i solens indre. Solenergien starter som gammastråling og bruker mange tusen år på å nå solens overflate for så å stråle ut i rommet. Gammastråling er dødelig for alt liv, men i løpet av denne prosessen reduseres energien i strålingen slik at den strålingen som skjer fra solens overflate er mindre skadelig.
Gammastrålingen fra fusjonsreaksjoner absorberes av solplasma og blir utstrålt igjen i vilkårlige retninger. I denne prosessen får strålingen noe lavere energi. Ettersom dette gjentar seg mange tusen ganger tar det lang tid før strålingen når solens overflate. Det er anslått at fotonene kan bruke mellom 10 000 til 170 000 år før de når overflaten. Den solstrålingen som er sluttproduktet består for det meste av synlig lys, men inneholder også infrarød stråling, UV-stråling og til og med litt røntgenstråling. Hver gammastråling i kjernen konverteres til flere millioner fotoner av synlig lys før de forsvinner ut i rommet. Samtidig med gammastrålingen frigjøres det nøytroner. Disse utgjør bare om lag 2 % av energien som frigjøres, og i motsetning til fotoner vekselvirker de sjelden med materie, og nesten alle forlater derfor solen i løpet av kort tid.
All elektromagnetisk stråling inkludert lys er bygd opp av fotoner. På samme måte som alle gjenstander som har masse er bygget opp av atomer, er lysstråling bygget opp av fotoner. Men lyset og fotonene har ikke masse, kun energi.
I tillegg til fotoner sender solen ut elektrisk ladede partikler som elektroner og protoner – populært kalt solvind. Når disse partiklene treffer jordens atmosfære og magnetfelt får vi det fenomenet som kalles nordlys.
Det er altså i solens kjerne at solenergien oppstår. Ved 30 prosent av radien har fusjonen stoppet nesten helt opp. Resten av stjernen varmes opp av energi som føres utover fra kjernen. Energien som produseres av fusjonen i kjernen, beveger seg utover gjennom solens ulike lag til fotosfæren, før den slipper ut i rommet som sollys eller partiklers kinetiske energi.
Mengden av solenergi som treffer Jorden i løpet av ett år, er om lag 15 000 ganger større enn hele verdens årlige energiforbruk. Den totale mengde utstrålt energi fra Solen er mer enn to milliarder ganger større enn energimengden som treffer jordoverflaten.
Solkonstanten er et mål på den mengden energi som solen tilfører jorden per areal enhet som er direkte utsatt for sollys, og tilsvarer omtrent 1 368 W/m². Sollyset på jordens overflate dempes imidlertid av jordens atmosfære slik at mindre effekt treffer overflaten – nærmere 1 000 W/m² ved klar himmel når solen er nær senit.
Solceller
Solen sender ut en ufattelig mengde energi. Selv om en svært liten del av den treffer jorden, ville om lag et kvarter solenergi tilsvare hele menneskehetens energiforbruk i et helt år dersom vi kunne utnytte den effektivt. Solenergien er resultat av det vi kaller atomfusjon. Det vil si at lettere stoffer under stort trykk og med stor hastighet smelter sammen til tyngre stoffer, på solen først og fremst hydrogen til helium. Under en slik fusjon blir det frigjort store mengder energi. Det gjøres stadig forsøk på å etablere kontrollbare atomfusjoner på jorden som energikilde, men så langt har man ikke lykkes.
Blanding av varmeenergi og stråling
Solenergi en blanding av varmeenergi og stråling. Varme og lys er en kombinasjon av elektriske og magnetiske bølger. I en elektromagnetisk bølge varierer forholdet mellom elektrisitet og magnetisme slik at når elektrisiteten øker synker magnetismen og omvendt. Denne bølgen sprer seg i rommet til den treffer noe. Når den treffer jordens magnetfelt, atmosfæren eller selve jordoverflaten blir energibølgen enten reflekter eller absorbert. Der absorbsjonen er størst får vi høye temperaturer som for eksempel ørkenområder, mens snø og is reflekterer mesteparten av solenergien. Forholdet mellom refleksjon og absorbsjon er helt avgjørende for klima på jorden. Hvis menneskelig aktivitet endrer den kjemiske sammensetningen i atmosfæren, endres dette forholdet og vi får menneskeskapte klimaendringer.
Energi fra solen er forutsetning for livet på jorden, men levende organismer er avhengig av den rette energimengden. For lite energi og jorden blir en is planet, for mye energi og jorden kan ende opp som planet Venus hvor overflate temperaturen er på mange hundre grader.
Passiv bruk av solenergien
Passiv bruk av solenergien har blitt nyttet av mennesker så langt tilbake som vi kjenner til. Solenergi tørker vått tøy mange steder den dag i dag. Tørking av planter, fisk og kjøtt har vært og er fortsatt viktige måter for å ta vare på matvarer. Valg av byggematerialer som enten absorberte eller reflekterte sollys var med på å gjøre leveforholdene behagelige.
Mer aktiv bruk av sollyset knyttes til bruk av linser og speil. Allerede i 1774 benyttet Joseph Priestly konsentrering av sollys med en glasslinse til å oppdage grunnstoffet oksygen ved å varme opp og spalte kvikksølvoksid. Det var imidlertid Antoine Lavoisier også kalt den moderne kjemis far som ga det navn og som i sitt laboratorium utviklet en sol-dreven smelteovn som kunne oppnå 1750 grader. I 1882 bygget Augustin Mouchot og Abel Pifre en soldreven trykkpresse som trykket avisa Soleil Journal, eller på norsk Solavisa.
En stund var soldrevne varmtvannsbeholdere populære særlig i USA. Den første ble lansert i 1891, men fortsatt i dag er mange i bruk i de solrike statene i USA.
Solenergi har vært nyttet på mange måter før den ble koblet til moderne teknologi. I arabiske land har man kjøletårn som utnytter at kald luft er tyngre enn varm. Ved å fange oppvarmet varm vind øverste i høye tårn og la den kjøles ved for eksempel å tørke vått tøy produserte man kjøligere luft som kunne slippes ut på gatenivå i husene. Solenergi har blitt benyttet til å fordampe saltvann for å produsere salt. Ved å lede saltvann inn i grunne basseng hvor vannet lett fordamper frigjøres saltet.
Det finnes sol-tørkere hvor sollys slippes gjennom en glassplate og absorberes og dermed avgir varme på en mørk flate. Slik varmes luften. Den varme luften stiger og trekker ny kjøligere luft inn i tørkeren. Varm luften kan ledes gjennom et lukket rom for å tørke grønnsaker eller andre matvarer.
Solenergi blir også brukt til å fordampe saltvann. Ved å kjøle dampen kan den kondenseres og skaffe ferskt drikkevann i områder hvor tilgang på ferskvann er vanskelig.
Solceller, Ukategorisert
De to vanligste måtene å utnytte solenergien på er bruk av solceller for å omdanne sollys til elektrisitet og solfangere for å utnytte varmestrålingen fra solen.
Man bør imidlertid ikke glemme den så kalte passiv solvarmen. Det er systemer som fungerer uten tekniske hjelpemidler. Et sydvendt vindu kan kalles en passiv solfanger. I energieffektive passivhus kan sydvendte vinduer kombineres med massive bygningsmaterialer som lagrer varme om dagen og gir den tilbake om natten når temperaturen synker. Passiv solvarme er den formen for solenergi som per i dag er mest utnyttet i Norge. Bidraget fra den passive solvarmen er beregnet til 3-4 TWh (terrawatt timer) i den norske bygningsmassen. På en måte kan vi si at mennesker alltid har utnyttet passiv solvarme.
De aktive solfangerne
Her skal vi konsentrere oss om aktive solfangere. I aktive solfangeren omdannes solstrålene til varme. Prinsippet bak solfangeren baserer seg på at en mørk flate absorberer opp mot 95 prosent av solstråling. Den absorberte strålingsenergien omdannes til det som kalles termisk energi eller mer populært varme.
Varmen avgis til et varmebærende medium som sirkulerer gjennom solfangeren. Det varmebærende mediet er vanligvis vann eller en blanding av vann og glykol, men også andre væsker som olje eller luft kan være varmemedium. Varmemediet sirkulerer fra solfangeren via et rørsystem og inn til et varme-lager hvor varmen avgis, gjerne via en varmeveksler. Varme-lageret er oftest en isolert beholder fylt med vann eller en annen væske som holder godt på varmen.
Solfanger, rørføring og et varmelager
Et solfangeranlegg består altså i hovedsak av en solfanger, rørføring og et varmelager. I tillegg kommer styringssystem med pumper. Et solfangeranlegg leverer typisk 300–500 kWh varme per kvm solfangerareal, avhengig av type solfangere og systemløsning. I likhet med solceller kan solfangere integreres i bygningsfasaden eller taket, og slik erstatte andre bygningsmaterialer. Alternativet er at de plasseres utenpå tak, vegger eller på bakken.
Varmen fra solfangeranlegget brukes vanligvis til oppvarming av rom og vann som nyttes i husholdningen eller i produksjon, men større avanserte solfangeranlegg kan drive turbiner som igjen produserer strøm.
En solfanger kan også utstyres med speil som konsentrerer solstrålene. Man har da det man kaller en sol-ovn. Disse kan oppnå meget høye temperaturer, opptil 3000 °C. Det er utviklet enkle og billige sol-ovner for bruk i utviklingsland, hvor mangel på brensel ofte er kombinert med rikelig med solinnstråling
Selv om mange solfangeranlegg er lokale i betydningen at de betjener bare en eller noen få bygninger finnes det også store fjernvarmeanlegg som forsyner større bygningsmasser. I Akershus Energipark i Lillestrøm har Akershus Energi installert 12 810 m2 med solfangere. Anlegget var et av Europas største da det ble satt i drift i 2012. Dette solfangeranlegget skal levere 4 GWh per år.
Solfanger i Norge
I Norge utgjør oppvarming største delen av energi forbruket i bygg. For husholdninger er det estimert at nærmere 80 % av energibruken går til oppvarming av selve bygget eller til varmtvann. Dersom formålet er å benytte solenergien til oppvarming, så er det fordelaktig å konvertere solstrålene direkte til varme fremfor å gå veien om strøm da en unngår betydelig effekt tap.
Det finnes flere ulike typer solfangere. De to vanligste typene er plane solfangere og vakuumrørsolfangere. Den mest brukte løsningen i norske bygninger har til nå vært plane solfangere, men etter hvert har vakuumrørsolfangere blitt mer populære. Den plane solfangeren er den vanligste typen solfanger i Europa, mens i Kina, verdens største solfangermarked, dominerer vakuumrørsolfangere.
Solfangere kan være med å danne grunnstammen i miljøvennlige energisystemer, og slik bidra til at bygg blir helt eller delvis selvforsynt med energi. De fleste solfangeranlegg har en tilbakebetalingstid på mellom 5 til 15 år, mens levetiden for anleggene ligger på rundt 20 til 30 år. Solfangeranlegget gir dermed gratis varme i mange år etter at det er nedbetalt.