Velg en side

Man antar at solsystemet ble dannet for 4,6 milliarder år siden som et resultat av at skyer av støv og gass ble trukket sammen av tyngdekraft gjennom en prosess som tok minst 50 millioner år. Vi antar at solen vil fortsette i sin nåværende tilstand i minst like lang tid som den har eksistert før den etter en eller flere kraftige ekspansjoner etter nye milliarder av år ender opp som en hvit eller sort dverg.

Solens masse utgjør mer enn 99 % av massen i solsystemet. Solen består i hovedsak av hydrogen og helium, mens bare vel 1,5 % består av tyngre grunnstoff. Dette utgjør likevel mer enn 5 500 ganger jordmassen.

Solens overflate temperatur er vel 5 500 grader Celsius. Solens energiutstråling er et resultat av en kjernefysisk fusjon hvor 620 millioner tonn hydrogen omdannes til helium hvert sekund, mens 4,26 millioner tonn masse omdannes til energi. Den kjernefysiske fusjonen består altså av hydrogen atomer som fusjonerer til helium atomer. Ved denne fusjonen blir det samtidig en liten masse til overs som omdannes til energi. Ettersom forholdet mellom masse og energi tilsvarer kvadratet av lysets hastighet i følge Albert Einsteins berømte masseenergilov vil selv en ubetydelig masse bli omgjort til en enorm mengde energi.

Det kreves meget høy temperatur og høyt trykk for å starte en slik fusjon. Det finner vi i solens indre. Solenergien starter som gammastråling og bruker mange tusen år på å nå solens overflate for så å stråle ut i rommet. Gammastråling er dødelig for alt liv, men i løpet av denne prosessen reduseres energien i strålingen slik at den strålingen som skjer fra solens overflate er mindre skadelig.

Gammastrålingen fra fusjonsreaksjoner absorberes av solplasma og blir utstrålt igjen i vilkårlige retninger. I denne prosessen får strålingen noe lavere energi. Ettersom dette gjentar seg mange tusen ganger tar det lang tid før strålingen når solens overflate. Det er anslått at fotonene kan bruke mellom 10 000 til 170 000 år før de når overflaten. Den solstrålingen som er sluttproduktet består for det meste av synlig lys, men inneholder også infrarød stråling, UV-stråling og til og med litt røntgenstråling. Hver gammastråling i kjernen konverteres til flere millioner fotoner av synlig lys før de forsvinner ut i rommet. Samtidig med gammastrålingen frigjøres det nøytroner. Disse utgjør bare om lag 2 % av energien som frigjøres, og i motsetning til fotoner vekselvirker de sjelden med materie, og nesten alle forlater derfor solen i løpet av kort tid.

All elektromagnetisk stråling inkludert lys er bygd opp av fotoner. På samme måte som alle gjenstander som har masse er bygget opp av atomer, er lysstråling bygget opp av fotoner. Men lyset og fotonene har ikke masse, kun energi.

I tillegg til fotoner sender solen ut elektrisk ladede partikler som elektroner og protoner – populært kalt solvind. Når disse partiklene treffer jordens atmosfære og magnetfelt får vi det fenomenet som kalles nordlys.

Det er altså i solens kjerne at solenergien oppstår. Ved 30 prosent av radien har fusjonen stoppet nesten helt opp. Resten av stjernen varmes opp av energi som føres utover fra kjernen. Energien som produseres av fusjonen i kjernen, beveger seg utover gjennom solens ulike lag til fotosfæren, før den slipper ut i rommet som sollys eller partiklers kinetiske energi.

Mengden av solenergi som treffer Jorden i løpet av ett år, er om lag 15 000 ganger større enn hele verdens årlige energiforbruk. Den totale mengde utstrålt energi fra Solen er mer enn to milliarder ganger større enn energimengden som treffer jordoverflaten.

Solkonstanten er et mål på den mengden energi som solen tilfører jorden per areal enhet som er direkte utsatt for sollys, og tilsvarer omtrent 1 368 W/m². Sollyset på jordens overflate dempes imidlertid av jordens atmosfære slik at mindre effekt treffer overflaten – nærmere 1 000 W/m² ved klar himmel når solen er nær senit.