Solceller, Ukategorisert
Solvarme er en effektiv måte å utnytte solenergien på. I beste tilfelle kan det oppnås en virkningsgrad på omkring 80 %, noe som betyr at en stor del av solstrålene kan brukes til å skape varme.
Vi skiller mellom passive solenergi-systemer som ikke krever ekstra energi for å operere og derfor ikke driftskostnader eller avgir drivhusgasser i drift. Vanligvis er også vedlikeholdskostnadene lave.
Med aktiv bruk av solvarmen, mener vi bruk av en eller annen form for solfangere, teknologi for å omdanne solenergi til varme, samt en metode for å lagre varmen og transportere den dit vi har bruk for den.
Trykksatte og trykkløse systemer
Det skilles mellom to typer solfangersystemer; trykksatte og trykkløse systemer. I de trykksatte solvarmesystemene er varmemediet en blanding av vann og glykol. Det siste for å unngå at anlegge fryser hvis det er kuldegrader ute. Dermed kan solfangersystemet brukes hele året. Solfangerne i et trykkløst system er plane solfangere.
I de trykkløse solvarmesystemene kan varmemediet også være rent vann. I så tilfelle må systemet automatisk kunne tømmes hvis temperaturen blir for lav. Til det brukes en akkumulatortank som holder vanlig atmosfærisk trykk. Det er viktig at disse er godt isolert så varmetapet blir minst mulig. Akkumulator tanken nyttes også for å avlaste system hvis temperaturen skulle bli for høy. For å unngå bruk av energikrevende pumper må rørføringen være slik at alt vannet kan dreneres ved hjelp av tyngdekraften.
Trykksatte systemer kan levere høye temperaturer. Solfangerne i trykksatte solfangeranlegg kan både være plane solfangere og vakuumrørsolfangere.
En plan solfanger absorberes solenergien av et materiale med stor absorberingsevne. Det betyr at det som regel er svart. Varmemediet sirkulerer så gjennom kanaler i det absorberende materialet eller i rør under. Solfangeren kan være laget av plast, eller metall, vanligvis aluminium eller kobber med et isolerende stoff på sidene og under og gjerne et dekkglass på oversiden. Alt for å redusere varmetapet.
I vakuumrørsolfangere absorberes solenergien i sylindriske vakuumrør. Solfangeren kan være et kobberrør med frostsikker væske. Væsken sirkulerer ved hjelp av temperaturforskjeller. I systemet inngår en varmeveksler som transporterer varmen til akkumulatortanken. Vakuumrørsolfangere benyttes kun i trykksatte solvarmesystemer. Disse systemene er konstruert for å produsere høye temperaturer. De har lite varmetap også ved lave utetemperaturer, og har høy effektivitet også ved svak sol.
Speil
En annen måte å overføre solenergi til varme på er ved å bruke speil som reflekterer lyset mot et absorberende materiale. Denne metoden brukes til enkle kokeovner også kalt solovner mye brukt i solrike strøk hvor det enten ikke er tilgang på annet brensel for eksempel i ørkenstrøk eller for å spare bruk av trevirke eller tørket gjødsel.
I større målestokk finnes anlegg med flere hundre speil. Temperaturen i slike kan bli flere tusen grader når himmelen er skyfri. I slike varmekraftverk plasseres justerbare parabolspeil slik at solstrålene blir reflektert til et brennpunkt hvor væskefylte rør blir oppvarmet slik at væsken fordamper. I såkalte solparker kan flere slike enheter være koblet sammen, mens det i soltårn er én sentral mottaker med et større antall speil omkring. Dampen kan så ledes gjennom rør for så å drive gassturbiner.
Solskorstein
En annen type kraftverk kalles solskorstein. Prinsippet her er at solen varmer opp luften under et glasstak. Den varme luften beveger seg horisontalt til sentrum av anlegget, hvor det står en høy skorstein. På grunn av høyden på skorsteinen vil trekken som skapes kunne drive vindturbiner og tilhørende generatorer for strømproduksjon. Ved å ha varme lagre under glasstaket kan kraftverket produsere også i perioder uten direkte belysning.
Det eksperimenteres med forsøk på å bruke kombinasjon av blågrønnalger og solenergi til å produsere hydrogen, men foreløpig er ikke denne teknologien klar for storskalaproduksjon.
Solenergi kan også brukes til kjøling såkalt varmebasert kjøling som benytter seg av at kjøle effekten ved fordamping ved lavt trykk såkalt absorbsjonskjøling.
Solceller, Ukategorisert
En beskrivelse av hva som frigjør energi fra solen, er omtrent slik:
I sentrum av sola er det ekstremt varmt – hele 15 millioner grader celsius. På grunn av den enorme massen til sola, er også trykket inni kjernen enormt. Det som skjer da er at atomkjernene til hydrogen fusjonere. Fusjon betyr at grunnstoffene smelter sammen ved at elektroner hopper over til den andre. Fire hydrogenkjerner blir til en heliumkjerne. I denne prosessen frigjøres det energi. Helium veier mindre enn hydrogenatomene til sammen.
Forholdet mellom masse og energi utrykkes ved den berømte likningen til Albert Einstein E= mc2, noe som betyr at selv en forsvinnende liten masse blir omdannet til en kolossal mengde energi (E står for energi, m står for masse og c står for lysets hastighet opphøyd). Denne massen frigjøres som strålingsenergi som sendes ut i verdensrommet og blant annet treffer jorda. Denne energien kan vi høste inn, og kaller den solenergi.
Den globale oppvarmingen
Den globale middeltemperaturen er i all hovedsak styrt av hvor mye energi jorden mottar fra sola og hvor mye energi jorden sender tilbake til verdensrommet i form av varmestråling. Denne utvekslingen av energi kalles jordens energibudsjett. De siste 10 000 år har energien inn i og ut av systemet vært i ganske god balanse, med kun gradvise temperatursvingninger på under én grad i gjennomsnitt.
Ny teknologi blant annet værsatellitter, har gjort det mulig for oss å overvåke alle deler av klimasystemet nøye – fra toppen av atmosfæren til dypt ned i havet. Alle disse observasjonene viser at verden blir varmere. En rekke uavhengige forskningsinstitutter arbeider i dag med å analysere alle målingene fra ulike deler av kloden til en sammenhengende tidsserie for global middeltemperatur.
I 2015 nådde vi for første gang en økning i den globale middeltemperaturen på én grad i forhold til førindustriell tid. Når den globale middeltemperaturen på jorda nå stiger, betyr det at mengden energi inn i klimasystemet øker. Endringer i middeltemperaturen, er altså et symptom på en ubalanse i energibudsjettet.
Global oppvarming innebærer ikke at temperaturen øker like mye for hvert år eller like mye overalt på jorden. Global oppvarming er en gradvis prosess, mens det er store naturlige svingninger i temperaturen fra år til år. For å studere klimaendringer må vi se på trender over lengre tid.
En global oppvarming på én grad krever en stor mengde energi. Det stabile klimaet som har vært en forutsetning for utviklingen av vår sivilisasjon er i endring og selv tilsynelatende små endringer kan få alvorlige konsekvenser for oss.
Det er fortsatt betydelig uenighet om hva som forårsaker oppvarmingen. Energibalansen kan påvirkes av en rekke faktorer som endringer i solstråling, vulkanutbrudd, skyer og andre naturlig variasjon.
Drivhuseffekten
Vi vet imidlertid at en av de viktigste faktorene for klimaet på jorden er drivhuseffekten. CO₂ og andre drivhusgasser har den egenskapen at de fanger opp deler av den utgående varmestrålingen fra jorden og dermed bidrar til at den gjennomsnittlige overflatetemperaturen er 15 plussgrader isteden for 18 minusgrader som vi ellers ville hatt. Øker mengden klimagasser vil gjennomsnittstemperaturen øke.
Vi vet at menneskelig aktivitet produserer klimagasser. Ved å forbrenne fossilt brensel frigjøres solenergien som er bundet i brenselet, men samtidig får vi CO₂ som biprodukt. Den viktigste menneskeskapte klimapåvirkningen er økte utslipp av CO₂-gass. Denne gassen er viktig for planteproduksjon og blir delvis tatt opp i havet og delvis av vegetasjonen, men det som ikke kan tas opp av naturen blir værende i atmosfæren hvor det bidrar til å fange solenergi, noe som gir økt global oppvarming.
Hvordan temperaturen endrer seg framover avhenger i stor grad av hvor mye og hvor raskt vi klarer å redusere våre utslipp av drivhusgasser. Mengden CO₂ i atmosfæren varer i mange hundre år. Derfor vil karbonet vi slipper ut nå fortsette å gi en oppvarmende effekt mange år framover.
Solceller, Ukategorisert
Solstrålingen varmer opp Jorden. Lufttemperaturen kan komme opp i nærmere 60 grader Celsius. De varmeste målingene er gjort i Afrika i den libyske ørkenen og i Death Valley i USA. I Europa er det Spania med 50 grader som har rekorden. Forsvinner solstrålingen faller temperaturen raskt. Kulden fra verdensrommet hvor temperaturen er nær det absolutte nullpunkt, om lag minus 273 grader Celsius. Antarktisk har rekorden med nesten minus 90 grader, mens det er målt nesten 70 minus flere steder i Sibir. Kulderekorden i Europa har også Russland med minus 55 grader, hvis vi ser bort fra Grønland hvor det er målt minus 66 grader. Ved siden av mengden solstråling influerer både fuktigheten, vinden og høyden over havet på temperaturen følt temperatur, noe et oppslag fra 2015 er en illustrasjon på:
«I den iranske byen Bandar Mahshahr ble det registrert effektive temperaturer opp mot 73 varmegrader da hetebølgen som steker hele Midtøsten fortsetter. Selv om den reelle temperaturen «bare» var 46 varmegrader, var luftfuktigheten på det som beskrives som «utrolige nivåer».
Som vi alle vet avhenger opplevd varme av omgivelsenes lederegenskaper. Tørr varm luft føles mye mindre varm enn vann med samme temperatur. Man skiller derfor mellom reell temperatur som måles med termometeret og effektiv temperatur som er et uttrykk for følte temperatur forskjeller.
Persiabukten er, sammen med Rødehavskysten av Etiopia og Somalias kyst til Adenbukta, kjent som de stedene i verden som får de høyeste effektive temperaturene. Dette er på grunn av at temperaturen i vannet kan bli over 30 grader, og vannet fordamper mye raskere. Dette fører til mindre luft avkjøling og høyere luftfuktighet, som igjen gir høyere effektive temperaturer. Den høyeste effektive temperaturen som er målt var i Dhahran i Saudi Arabia i 2003 da man nådde 81 effektive varmegrader.
Slike temperaturer kan drepe levende organismer. Menneske dør for eksempel når kroppstemperaturen blir noen og førti grader. Kroppens nedkjøling er avhengig av væskefordamping, derfor må man ha mye å drikke i varmt vær for ikke å oppleve ubehag. Når hetebølger rammer bebodde områder, spesielt i fattige land med liten mulighet til kunstig regulering av inneklima, er det ikke uvanlig at mange mennesker dør.
På samme vis er levende organismer avhengig av varme. Blir temperaturen for lav dør vi. Uten mulighetene for varmeisolerende klær og oppvarmede boliger ville store deler av jorden være ubeboelige for mennesker.
Den enkleste bruk av solinnstrålingen er direkte oppvarming. Ved å utforme bygningskonstruksjoner og innretninger optimalt kan innstrålingen sørge for bolig- og vannoppvarming, og for energi til matlaging og tørking av landbruksprodukter. Bygninger kan varmes opp «passivt», det vil si ved innstråling gjennom vinduer, tak og vegger, og «aktivt» ved hjelp av solfangere og bruk av materialer som kan lagre varme som for eksempel vanntanker.
Passiv bruk av solenergi har blitt brukt av mennesker helt siden man begynte å bygge hus. Ved å bygge hus vendt mot sør kan man utnytte varmen og lyset som kommer fra sola og dermed spare bruk av andre energikilder. Glass slipper gjennom kort bølget stråling og inventaret kan absorbere denne energien og sender så ut lang bølget stråling som gir oppvarming. Ettersom materialer har ulik evne til å absorbere varme, er valg av materiale i inventar viktig. Det har blitt mer og mer vanlig å bygge hus, leiligheter og andre bygninger med tanke på å utnytte solenergien best mulig. I tillegg er god isolasjon også viktig for å spare energi. I dag planlegges de fleste solenergisystemene i nybygg, men det er også mulig å gjøre om et eldre hus til solhus.
Ved å montere solfangere på taket er det mulig å utnytte solvarmen ennå bedre. Med solfangere kan en varme opp vann slik at vannet kan brukes både til oppvarming av huset og til oppvarming av vann til forbruk. Varmt vann som ikke blir brukt med det samme kan lagres i flere dager i isolerte tank. Når det ikke er nok sol til at solfangerne kan en supplere med andre energikilder.
Solceller, Ukategorisert
Det er mulig å omdanne solenergi direkte til elektrisitet ved hjelp av den fotoelektriske effekten, som kort fortalt innebærer at elektroner forflytter seg fra et stoff til et annet når de belyses og absorberer energi fra fotoner.
Dette fenomenet ble oppdaget allerede i 1887 av Heinrich Rudolf Hertz. Senere videreutviklet både Max Planck og Albert Einstein teorien bak den fotoelektriske effekten.
Denne kunnskapen utnyttes i solceller for å omdanne sollys til elektrisitet. En solcelle består av en halvleder der for- og baksiden er behandlet slik at forsiden har overskudd på frie elektroner og baksiden underskudd eller omvendt. Bundne elektroner i solcellen kan absorbere et foton også kalt et energikvant og dermed bli frie. De aller fleste av disse vil fanges inn av et elektrisk felt i grensesjiktet mellom forsiden og baksiden. Dersom man forbinder for- og bakside med en elektrisk krets, kan elektronene utrette nyttig arbeid i en lyspære, elektrisk motor, PC eller lignende.
Solceller gir kun en spenning på om lag 0,5 volt litt avhengig av valg av teknologi. For å få en praktisk brukbar størrelse på panelet og en egnet spenning, kobler man derfor solceller i serie i et såkalt panel. Et typisk panel med solceller av krystallinsk silisium består av 50-70 serie- og parallellkoblete celler, som er kapslet inn mellom et dekkglass og en bakplate. Panelet må beskytte solcellene mot vær og vind, og kvaliteten på innkapslingen er derfor svært viktig. I tillegg må panelet ha tilstrekkelig mekanisk stabilitet for å beskytte de skjøre solcellene mot håndtering og påkjenninger fra regn og hagl.
De viktigste fordelene med solceller er driftssikkerhet og at teknologien lett kan tilpasses ulike behov i alt fra svært små systemer til svært store anlegg. Når solceller brukes i små systemer, er de som regel bygd inn i et produkt, for eksempel en gatelykt, armatur for hagebelysning eller liknende. Det er som regel ikke noe strømuttak på disse systemene, som dermed kun kan brukes til det formål de er designet for. Slike produkter er utbredte, men representerer likevel en svært liten del av markedet for solceller.
Frittstående systemer leverer typisk elektrisitet til hytter, husholdninger eller i noen tilfeller hele landsbyer som ikke er tilkoblet kraftnettet. De brukes når nettilknytning eller andre frittstående løsninger er for kostbare eller forurensende. Frittstående solcelle-systemer kan også levere kraft til for eksempel telekommunikasjon, vannpumping og navigasjonslys. Slike enkle solcelle-systemer kan være ideelle når man trenger pålitelig, men begrenset strømforsyning og det ikke er mulig å etablere en nettforbindelse og det er kostbart å bringe frem drivstoff til aggregater.
For generell strømforsyning finnes det litt forskjellige systemer. Distribuerte nett tilknyttede systemer er vanlige i en rekke land på grunn av ulike tilskuddsordninger. Tyskland har vært foregangsland, men nå har også Italia, Spania og Frankrike Japan og Kina kommet etter. Denne type systemer har typisk en installert maksimal effekt fra noen kilo Watt til flere Mega Watt, og kan være installert på private hjem eller private eller offentlige kommersielle bygg som f. eks. kontorbygg, industrihaller, togstasjoner og lignende. I de senere år har det kommet en rekke produkter for bygningsintegrering av solceller. Panelene er utformet slik at de kan passes direkte inn i et takbelegg eller i en fasade.
Sentraliserte nett tilknyttede systemer kan være på mange mega watt og er simpelthen kraftverk som benytter solcelleteknologi. Elektrisiteten som genereres mates direkte inn på et kraftnett. Slike løsninger finner man bant annet i USA og Kina. Også norske aktører bygger solkraftverk i utlandet: Statkraft har vært engasjert i å bygge solkraftverket i Italia. Scatec solar er det norske selskapet som har utviklet flest solcelleanlegg i verden. I følge Scatec solar sine internettsider har selskapet bygget bakke monterte solarkraftverk i Italia, Tyskland, Tsjekkia, Sør-Afrika og Rwanda.
Solceller, Ukategorisert
Solen er å sammenlikne med en vedvarende atomeksplosjon. Når hydrogen fusjonerer til helium frigjøres store mengder energi som spres i form av stråling. Denne strålingen er under visse betingelser livgivende, men vil uten nødvendig skjerming være dødbringende for alt liv. I et atomkraftverk skjer skjerming med vann og tungtvann, bly og betong. Jorden skjermes fra stråling fra verdensrommet ved sitt magnetfelt, men atmosfæren er kanskje den viktigste skjermingen mot skadelig solstråling.
Mest kjent er den ultrafiolette strålingen også kalt UV-stråling. Dette er elektromagnetisk stråling med kortere bølgelengde enn synlig lys.
Ozonlaget er en viktig regulator av UV-strålingen. Når ozonlaget svekkes, kan UV-strålingen bli en fare for livet på jorden. Brunfargen som mange ønsker seg og som oppfattes som et tegn på sunnhet, er egentlig en beskyttelsesmekanisme mot skader som påføres hudcellene av de ultrafiolette strålene.
Dannelsen av D-vitamin er den mest veldokumenterte positive effekten av UV-stråling. D-vitamin har blant annet betydning for kalsiumopptak og forebygging av en rekke sykdommer, – også visse kreftformer.
Mange personer opplever at de trives bedre og føler seg mer opplagt når det er sol. Dette henger for en stor del sammen med den varmen vi føler og den stimulerende virkningen sollyset har på hormoner og hjerne vår.
Sollys har også dokumentert positiv virkning på revmatisme, psoriasis og andre auto immune sykdommer. I tillegg har sollys positiv virkning når det gjelder mange hudlidelser som for eksempel psoriasis og ulike former for eksem.
Sollyset har imidlertid også en rekke negative effekter.
Solforbrenning er kanskje det man først forbinder med negative effekten av UV-stråling på hud. Avhengig av hvor sterk solforbrenning er skiller man mellom førstegrads forbrenning som gir en betennelseslignende reaksjon i huden. Denne blir gradvis borte i løpet av noen dager. Mer alvorlig er andregradsforbrenning som gir blemmer og tredjegradsforbrenning med åpne sår og feber.
Solstikk, også kalt heteslag, kan bli et resultat av langvarig opphold i solen. Symptomene på solstikk er gjerne hodepine, kramper og bevissthetsforstyrrelse og forhøyet kroppstemperatur. I alvorlige tilfeller kan heteslag være livstruende.
Generelt kan oppvarming via sollyset føre til uttørring. Uten tilstrekkelig tilførsel av væske og salter kan også dette føre til livstruende situasjoner.
Mange lider av soleksem som minner om en allergisk reaksjon, uten at noen helt vet hva årsaken er. Noen mennesker får soleksem en sjelden gang, mens andre får det til stadighet under soling, noe som kan tyde på en viss genetisk disposisjon.
Immunsystemet kan bli svekket av UV-stråling. Dette kan føre til økt fare for infeksjoner og svulster i huden. På denne måten kan UV-stråling også aktivere virus som for eksempel herpes og HIV.
Er UV strålingen tilstrekkelig sterk kan øyet bli skadet. For sterk stråling gjerne kombinert med refleksjon fra snø og vann kan forårsake skade i hornhinnen og gi akutte betennelser som snøblindhet. Øyelinsen kan skades eller forandre seg over tid på grunn av soling. Dette kan føre til fordunkling av linsen og utvikling av sykdommen grå stær.
UV-strålingen skader hudens elastiske fibre, blodkar utvides, underhuden blir tykkere, og huden ser rynket og gammel ut.
Hudkreft er den alvorligste langtidseffekten av UV-stråling. Føflekkreft er den farligste av alle typer hudkreft. Hvis den ikke behandles i tide, kan den spre seg raskt i kroppen. Antallet nye tilfeller av føflekkreft er i dag sju ganger større enn for 50 år.
Alt i alt er sollys og solenergi forutsetning for alt liv på Jorden. Sollys og solvarme oppleves av de fleste som positivt, og det er dokumentert en rekke positive effekter av sollys. På den andre siden kan stråling fra solen være dødbringende og skade mennesker og dyr. Vi har gjennom millioner av år tilpasses akkurat passe mengde sollys. For mye eller for lite kan få fatale følger.
Solceller, Ukategorisert
Et solseil er en type fremdriftsmetode som kan nyttes av romfartøyer. Solseilet er konstruert for å bevege seg utelukkende på grunn av solstrålingen som reflekteres av seilet. Det finnes ikke noe drivstoff som må forbrukes, og det er dermed ingen begrensing på seilets rekkevidde.
Solstrålingen kan ses på som en strøm av energipakker også kalt fotoner. Fotonene har både energi og bevegelsesmengde. Når de reflekteres av seilet, endres bevegelsesmengden, noe som gjør at det virker en kraft på seilet. Trykket på seilet varierer med den totale mengden solstråling som treffer seilet. Seilets effektivitet øker jo nærmere Solen det er. Kraften avtar med kvadratet av avstanden fra Solen. Jo lengre fra Solen seilet er, jo mindre stråling treffer seilet. Solseil vil derfor fungere best i det indre solsystemet. Trykket på seilet avtar også jo mer seilet snus på kant mot Solen. Et seil kan reflektere omkring 90 % av strålingen som treffer det. Det er høyst usannsynlig at noen annen type romfartøy i dette århundre vil kunne operere mer effektivt enn solseilet i den indre delen av Solsystemet.
Trykket fra solstrålingen som virker på seilet, forårsaker en kraft som akselererer eller bremser seilet, avhengig av hvordan dette er orientert i forhold til Solen. Energikilden trenger ikke nødvendigvis være en stjerne, men også andre kilder som for eksempel laser, mikrobølger og magnetfelt kan benyttes. Det er viktig å ha et kontrollsystem som kan orientere seilet i forhold til energikilden. Et praktisk problem er at solseil må være svært store for å være effektive.
Selv om kraften som virker på solseilet er svak, vil det kunne gi et romfartøy som ikke skal overvinne noen friksjon av betydning, en enorm hastighet over tid. Et solseil som har en akselerasjon på bare 1 mm/s2, vil i løpet av ett år endre sin hastighet med 31,5 km per sekund eller vel 113 000 km i timen fordi denne akselerasjonen da virker i 31,5 millioner sekunder.
Med solseil vil det bli mulig å frakte betydelige nyttelaster til de fleste himmellegemer i solsystemet. Man har beregnet at et seil på 800 m x 800 m kan frakte seg selv og en nyttelast på 1500 kg til et møte med Halleys komet. Noe av det beste med solseilet er imidlertid at når en nyttelast er levert, kan det ta med tilsvarende nyttelast og komme tilbake med den. Denne egenskapen er en direkte følge av at solseilet ikke trenger å frakte med seg drivstoff.
Science fiction-forfattere har lenge beskrevet lange romferder med romskip drevet fram med solseil. Nå kan drømmene snart være virkelighet, men utviklingen har ikke skjedd uten problemer.
Det er ikke mulig å sende ut farkoster med seil ferdig påmontert. Derfor må seilene ligge pent innpakket under utskytning, for så å foldes ut i rommet. Den japanske romfartsorganisasjonen JAXA testet i 2004 om intrikat sammenbrettede strukturer ville brette seg ut etter oppskytning. To forskjellige solseil ble brettet ut med hell. Det var første gang slike solseil blir brettet ut i rommet.
Den første sonden som skulle benyttet solseil var Cosmos 1 som i 2005 skulle skytes opp fra en russisk ubåt i Barentshavet. Oppskytningen, i regi av det private The Planetary Society, slo imidlertid feil.
Tre år etter, i 2008, forsøkte NASA ved hjelp av en Falcon 1 rakett fra Space X å sende opp sin NanoSail-D. Dette forsøket mislykkes da raketten feilet. Satellitten gikk tapt, men NASA hadde en ekstra modell av NanoSail-D i bakhånd. Etter en del forbedringer ble NanoSail-D2 skutt opp i 2010.
Også nå fikk man problemer, men etter flere forsøk lykkes det å få satellitten til å folde ut seilene. Som navnet antyder var dette en mikrosatellitt på størrelse med et vanlig brød.
I 2010 passerte den indiske sonden IKAROS Venus. IKAROS var det første romfartøyet som viste at det var mulig å bruke solseil for interplanetarisk fart.
i 2015 ble det lille romfartøy LightSail sendt ut i rommet. Selve fartøyet er satt sammen av tre små kuber. En inneholder solceller, kamera, sensorer og kontrollsystemer, de to andre et solseil. Oppe i verdensrommet foldes det først ut solceller og antenner, og så det store seilet på 32 kvadratmeter.
Det er bare et tidsspørsmål når et større romfartøy drevet med solseil vil være på vei ut i verdensrommet.