Velg en side
Boulder Solar 1 – Las Vegas

Boulder Solar 1 – Las Vegas

Med oppføringen av solcelleanlegget Boulder Solar 1 kan Las Vegas briske seg med å være den største amerikanske byen hvor de kommunale bygningene og fasilitetene utelukkende drives av fornybar energi.

En av de mest ressurskrevende byene i USA, Las Vegas, melder seg nå på i klimakampen. Alle offentlige bygninger og fasiliteter kjører utelukkende på fornybar energi, skriver norges automater.

Byens ordfører, Carolyn Goodman, uttaler i en pressekonferanse at Las Vegas nå kan skryte av å være den eneste store byen i USA og en av de eneste i verden, hvor all energi som blir brukt i kommunal regi kommer fra grønne kilder.

Reisen mot bare å bruke ren energi har tatt ti år. Prosjektet ble framskyndet da byen inngikk et samarbeid med det offentlige forsyningsselskapet NV Energy for nesten ett år siden. Det skal understrekes at det på nåværende tidspunkt nesten bare er offentlige fasiliteter som er omfattet av den grønne strategien. Mange boliger og næringsbygninger er ikke med på dette enda, men det ventes at strømkrevende fasiliteter som f.eks. nye casinoer vil ta i bruk denne energien etterhvert som de nye casinoene bygges.

Annonseringen kommer i kjølvannet av at Boulder Solar 1, et enormt solcelleanlegg i den sørøstlige delen av Nevada ble operasjonelt. Kombinert med andre lokale grønne energikilder som geotermiske kraftverk og solceller dekker anlegget 100 prosent av byens kommunale energibehov.

Skiftet til fornybar energi startet i 2008 og har siden da spart byen 5 millioner dollar (35,5 millioner kroner) årlig. I november signerte 48 ordførere et åpent brev til den kommende presidenten, Donald Trump, hvor de gir tilsagn om at de vil øke klimainnsatsen i byene deres, med eller uten hjelp fra den føderale regjeringen.

Av brevet fremgår det blant annet at 48 ordførere oppfordrer Donald Trump til å bruke makten som president til å utvide og akselerere de lokale initiativene som folket rungende har støttet. «Vi ber deg som president om å lete oss i bestrebelsene på å utvide kildene til fornybar energi. Vi har bruk for forsyningssikkerhet, imøtegå klimaendringer og samtidig sette i gang en ny produksjon som vil skape energi- og byggeboom i Amerika», står det er i brevet. Så gjenstår det å se om Trump etterkommer ønskene deres.

Lyse er først med strømlagring til norske hjem

Lyse er først med strømlagring til norske hjem

Ny teknologi skal løse komplekse utfordringer knyttet til elektrifisering. Nå er energi- og teleselskapet Lyse først ute med en løsning for strømlagring i norske hjem.

Det interkommunale konsernet Lyse AS er først i Norge til å ta i bruk energilagring for hjemmet. I det europeiske forskningsprosjektet Invade, skal enheter for strømlagring i

batterier installeres i 20 hjem i Rogaland. Anleggene leveres av Eaton og består i korte trekk av gjenbrukte batterier fra Nissan sine elbiler koblet sammen med smart teknologi for strømstyring. To av enhetene er allerede i drift, og de neste 18 skal installeres i månedene som kommer.

– Energilagring gir bedre bruk av strømnettet og gjør det mer lønnsomt å ta i bruk fornybar energi. Fageksperter fremhever energilagring som en av verdens viktigste

teknologier akkurat nå, sier administrerende direktør for Eaton i Norge, Jon Helsingeng.

– Vi lanserer energilagringsløsninger over hele verden, og Norge er et av de viktigste landene. Dette har direkte sammenheng med hvor langt vi har kommet i elektrifiseringen av

samfunnet, og det høye elbilsalget, sier Helsingeng.

For husholdninger, næringsbygg og som større enheter

Energilagring er tilgjengelig for husholdninger, næringsbygg og som større enheter for energinettet og datasenter. xStorage-enhetene som Lyse plasserer ut er i hovedsak

gjenbrukte Nissan elbil batterier i smarte strømskap fra Eaton. Enhetene er på både 6 kWh og 4.2 kWh, noe som tilsvarer et typisk hjems topp-forbruk i tre til fem timer.

– Dette prosjektet er det store forventninger til. Energimarkedet står ovenfor store endringer, og vi ønsker å ligge i forkant. Dette gjør vi ved å teste og utvikle innovative teknologier og forretningsmodeller. På den måten kan vi bidra til å løse de problemene vi vet vil oppstå både i det lokale og internasjonale energimarkedet, sier Trond Thorbjørnsen, senior forretningsutvikler i Lyse.

En av hensiktene er å bidra til å jevne ut forbrukstoppene som oppstår når strømnettet belastes på det meste, som på kalde morgener eller ettermiddager når huseiere kommer hjem fra jobb.

– Ved å lagre strøm i batteriet når strømmen er billig, kan man bruke av denne strømmen når den er på det dyreste, sier Thorbjørnsen.

Lyses investeringer i energilagring inngår som en større del av et forskningsprosjekt i EU som heter INVADE. Hele prosjektet ledes av Smart Innovation Norway hvor Lyse har ansvaret for den norske piloten. Det vil også kjøres piloter i Tyskland, Nederland, Bulgaria og Spania hvor ulike aktører skal undersøke grunnlag for nye smarte løsninger og forretningsmodeller innen kraft- og energimarkedet.

– Lyse skal særlig utforske løsninger mot forbrukermarkedet. I prosjektet skal det utvikles nye digitale løsninger som sikrer at strømnettet utnyttes bedre, at det legges til rette for bruk av mer fornybar energi, og at forbrukstopper jevnes ut ved bruk av energilagring, sier Thorbjørnsen.

Lyse har arbeidet med Invade i ett år, og testing av styresystem starter til sommeren og varer frem til 2020. Målet med energilagringsprosjektet er å teste ut batteriene i tre ulike delprosjekter:
Energibruk i forhold til effekt, energiforbruk opp mot økonomisk lønnsomhet, og hvordan energilagring sikrer bedre utnyttelse av kortreist energi som solceller. Som en del av prosjektet skal Lyse også vurdere dette opp mot strøm- og varmestyringsenheter i hjemmet, og hvordan dette kan kobles opp mot tingenes internett.

– Vi ser for oss mange spennende løsninger der kunstig intelligens (AI) og maskinlæring står for styringen. Det å kunne lagre energi passer veldig godt inn i et fremtidig energi-bilde. Fordelene vil tilfalle samfunnet i form av smartere energibruk, nettselskapene vil få en optimalisert distribusjon, og kundene vil få enda bedre forutsetninger for å kunne styre hjemmene sine, sier Thorbjørnsen.

Energilagring vil også bidra til en jevnere belastning på strømnettet. Dette blir en nødvendig følge av at induksjonskomfyrer, elbilladere og diverse elektriske dingser bidrar til at hjemmene våre blir stadig mer energikrevende, og forbrukstoppene høyere.

– Energilagring er nødvendige teknologier for å møte fremtidens press på energinettet. Det er inspirerende å se hvordan Lyse er villig til å teste energilagring som en viktig del av sitt fremtidige helhetlige tilbud. De vil høste erfaringer av stor nasjonal betydning, sier Helsingeng.

2,5% rente på sollån

2,5% rente på sollån

I 2017 satte Otovo ny rekord i salg av solceller i Norge, og i 2018 skal vi gjøre det enda enklere for enda flere å få rimelig og kortreist strøm fra eget tak.

Lav rente
Sammen med SpareBank 1 tilbyr vi nå et sollån med en rente på 2,5%! Med sollån og støtte fra Enova går du pluss på bankkontoen fra første måned.

Søknaden
Det nye lånet har sikkerhet i boligen, og hele prosessen for søknad og innvilgelse er digital. Ikke lenger pliktig oppmøte i banken, samtaler med rådgivere eller papirbunker i posten: Ingen i verden har en enklere vei til et sollån enn norske Otovo-kunder i 2018.

Hvorfor solfangere kan benyttes til husholdninger

Hvorfor solfangere kan benyttes til husholdninger

De to vanligste måtene å utnytte solenergien på er bruk av solceller for å omdanne sollys til elektrisitet og solfangere for å utnytte varmestrålingen fra solen.

Man bør imidlertid ikke glemme den så kalte passiv solvarmen. Det er systemer som fungerer uten tekniske hjelpemidler. Et sydvendt vindu kan kalles en passiv solfanger. I energieffektive passivhus kan sydvendte vinduer kombineres med massive bygningsmaterialer som lagrer varme om dagen og gir den tilbake om natten når temperaturen synker. Passiv solvarme er den formen for solenergi som per i dag er mest utnyttet i Norge. Bidraget fra den passive solvarmen er beregnet til 3-4 TWh (terrawatt timer) i den norske bygningsmassen. På en måte kan vi si at mennesker alltid har utnyttet passiv solvarme.

De aktive solfangerne

Her skal vi konsentrere oss om aktive solfangere. I aktive solfangeren omdannes solstrålene til varme. Prinsippet bak solfangeren baserer seg på at en mørk flate absorberer opp mot 95 prosent av solstråling. Den absorberte strålingsenergien omdannes til det som kalles termisk energi eller mer populært varme.

Varmen avgis til et varmebærende medium som sirkulerer gjennom solfangeren. Det varmebærende mediet er vanligvis vann eller en blanding av vann og glykol, men også andre væsker som olje eller luft kan være varmemedium. Varmemediet sirkulerer fra solfangeren via et rørsystem og inn til et varme-lager hvor varmen avgis, gjerne via en varmeveksler. Varme-lageret er oftest en isolert beholder fylt med vann eller en annen væske som holder godt på varmen.

Solfanger, rørføring og et varmelager

Et solfangeranlegg består altså i hovedsak av en solfanger, rørføring og et varmelager. I tillegg kommer styringssystem med pumper. Et solfangeranlegg leverer typisk 300–500 kWh varme per kvm solfangerareal, avhengig av type solfangere og systemløsning. I likhet med solceller kan solfangere integreres i bygningsfasaden eller taket, og slik erstatte andre bygningsmaterialer. Alternativet er at de plasseres utenpå tak, vegger eller på bakken.

Varmen fra solfangeranlegget brukes vanligvis til oppvarming av rom og vann som nyttes i husholdningen eller i produksjon, men større avanserte solfangeranlegg kan drive turbiner som igjen produserer strøm.

En solfanger kan også utstyres med speil som konsentrerer solstrålene. Man har da det man kaller en sol-ovn. Disse kan oppnå meget høye temperaturer, opptil 3000 °C. Det er utviklet enkle og billige sol-ovner for bruk i utviklingsland, hvor mangel på brensel ofte er kombinert med rikelig med solinnstråling

Selv om mange solfangeranlegg er lokale i betydningen at de betjener bare en eller noen få bygninger finnes det også store fjernvarmeanlegg som forsyner større bygningsmasser.  I Akershus Energipark i Lillestrøm har Akershus Energi installert 12 810 m2 med solfangere. Anlegget var et av Europas største da det ble satt i drift i 2012. Dette solfangeranlegget skal levere 4 GWh per år.

Solfanger i Norge

I Norge utgjør oppvarming største delen av energi forbruket i bygg. For husholdninger er det estimert at nærmere 80 % av energibruken går til oppvarming av selve bygget eller til varmtvann. Dersom formålet er å benytte solenergien til oppvarming, så er det fordelaktig å konvertere solstrålene direkte til varme fremfor å gå veien om strøm da en unngår betydelig effekt tap.

Det finnes flere ulike typer solfangere. De to vanligste typene er plane solfangere og vakuumrørsolfangere. Den mest brukte løsningen i norske bygninger har til nå vært plane solfangere, men etter hvert har vakuumrørsolfangere blitt mer populære. Den plane solfangeren er den vanligste typen solfanger i Europa, mens i Kina, verdens største solfangermarked, dominerer vakuumrørsolfangere.

Solfangere kan være med å danne grunnstammen i miljøvennlige energisystemer, og slik bidra til at bygg blir helt eller delvis selvforsynt med energi. De fleste solfangeranlegg har en tilbakebetalingstid på mellom 5 til 15 år, mens levetiden for anleggene ligger på rundt 20 til 30 år. Solfangeranlegget gir dermed gratis varme i mange år etter at det er nedbetalt.

Aktiv bruk av solvarme

Aktiv bruk av solvarme

Solvarme er en effektiv måte å utnytte solenergien på. I beste tilfelle kan det oppnås en virkningsgrad på omkring 80 %, noe som betyr at en stor del av solstrålene kan brukes til å skape varme.

Vi skiller mellom passive solenergi-systemer som ikke krever ekstra energi for å operere og derfor ikke driftskostnader eller avgir drivhusgasser i drift. Vanligvis er også vedlikeholdskostnadene lave.

Med aktiv bruk av solvarmen, mener vi bruk av en eller annen form for solfangere, teknologi for å omdanne solenergi til varme, samt en metode for å lagre varmen og transportere den dit vi har bruk for den.

Trykksatte og trykkløse systemer

Det skilles mellom to typer solfangersystemer; trykksatte og trykkløse systemer. I de trykksatte solvarmesystemene er varmemediet en blanding av vann og glykol. Det siste for å unngå at anlegge fryser hvis det er kuldegrader ute. Dermed kan solfangersystemet brukes hele året. Solfangerne i et trykkløst system er plane solfangere.

I de trykkløse solvarmesystemene kan varmemediet også være rent vann. I så tilfelle må systemet automatisk kunne tømmes hvis temperaturen blir for lav. Til det brukes en akkumulatortank som holder vanlig atmosfærisk trykk. Det er viktig at disse er godt isolert så varmetapet blir minst mulig. Akkumulator tanken nyttes også for å avlaste system hvis temperaturen skulle bli for høy. For å unngå bruk av energikrevende pumper må rørføringen være slik at alt vannet kan dreneres ved hjelp av tyngdekraften.

Trykksatte systemer kan levere høye temperaturer. Solfangerne i trykksatte solfangeranlegg kan både være plane solfangere og vakuumrørsolfangere.

En plan solfanger absorberes solenergien av et materiale med stor absorberingsevne. Det betyr at det som regel er svart. Varmemediet sirkulerer så gjennom kanaler i det absorberende materialet eller i rør under. Solfangeren kan være laget av plast, eller metall, vanligvis aluminium eller kobber med et isolerende stoff på sidene og under og gjerne et dekkglass på oversiden. Alt for å redusere varmetapet.

I vakuumrørsolfangere absorberes solenergien i sylindriske vakuumrør. Solfangeren kan være et kobberrør med frostsikker væske. Væsken sirkulerer ved hjelp av temperaturforskjeller. I systemet inngår en varmeveksler som transporterer varmen til akkumulatortanken. Vakuumrørsolfangere benyttes kun i trykksatte solvarmesystemer. Disse systemene er konstruert for å produsere høye temperaturer. De har lite varmetap også ved lave utetemperaturer, og har høy effektivitet også ved svak sol.

Speil

En annen måte å overføre solenergi til varme på er ved å bruke speil som reflekterer lyset mot et absorberende materiale. Denne metoden brukes til enkle kokeovner også kalt solovner mye brukt i solrike strøk hvor det enten ikke er tilgang på annet brensel for eksempel i ørkenstrøk eller for å spare bruk av trevirke eller tørket gjødsel.

I større målestokk finnes anlegg med flere hundre speil. Temperaturen i slike kan bli flere tusen grader når himmelen er skyfri. I slike varmekraftverk plasseres justerbare parabolspeil slik at solstrålene blir reflektert til et brennpunkt hvor væskefylte rør blir oppvarmet slik at væsken fordamper. I såkalte solparker kan flere slike enheter være koblet sammen, mens det i soltårn er én sentral mottaker med et større antall speil omkring. Dampen kan så ledes gjennom rør for så å drive gassturbiner.

Solskorstein

En annen type kraftverk kalles solskorstein. Prinsippet her er at solen varmer opp luften under et glasstak. Den varme luften beveger seg horisontalt til sentrum av anlegget, hvor det står en høy skorstein. På grunn av høyden på skorsteinen vil trekken som skapes kunne drive vindturbiner og tilhørende generatorer for strømproduksjon. Ved å ha varme lagre under glasstaket kan kraftverket produsere også i perioder uten direkte belysning.

Det eksperimenteres med forsøk på å bruke kombinasjon av blågrønnalger og solenergi til å produsere hydrogen, men foreløpig er ikke denne teknologien klar for storskalaproduksjon.

Solenergi kan også brukes til kjøling såkalt varmebasert kjøling som benytter seg av at kjøle effekten ved fordamping ved lavt trykk såkalt absorbsjonskjøling.

Global oppvarming – begynnelsen på slutten eller bare naturlige svingninger

Global oppvarming – begynnelsen på slutten eller bare naturlige svingninger

En beskrivelse av hva som frigjør energi fra solen, er omtrent slik:

I sentrum av sola er det ekstremt varmt – hele 15 millioner grader celsius. På grunn av den enorme massen til sola, er også trykket inni kjernen enormt. Det som skjer da er at atomkjernene til hydrogen fusjonere. Fusjon betyr at grunnstoffene smelter sammen ved at elektroner hopper over til den andre. Fire hydrogenkjerner blir til en heliumkjerne. I denne prosessen frigjøres det energi. Helium veier mindre enn hydrogenatomene til sammen.

Forholdet mellom masse og energi utrykkes ved den berømte likningen til Albert Einstein E= mc2, noe som betyr at selv en forsvinnende liten masse blir omdannet til en kolossal mengde energi (E står for energi, m står for masse og c står for lysets hastighet opphøyd). Denne massen frigjøres som strålingsenergi som sendes ut i verdensrommet og blant annet treffer jorda. Denne energien kan vi høste inn, og kaller den solenergi.

Den globale oppvarmingen

Den globale middeltemperaturen er i all hovedsak styrt av hvor mye energi jorden mottar fra sola og hvor mye energi jorden sender tilbake til verdensrommet i form av varmestråling. Denne utvekslingen av energi kalles jordens energibudsjett. De siste 10 000 år har energien inn i og ut av systemet vært i ganske god balanse, med kun gradvise temperatursvingninger på under én grad i gjennomsnitt.

Ny teknologi blant annet værsatellitter, har gjort det mulig for oss å overvåke alle deler av klimasystemet nøye – fra toppen av atmosfæren til dypt ned i havet. Alle disse observasjonene viser at verden blir varmere. En rekke uavhengige forskningsinstitutter arbeider i dag med å analysere alle målingene fra ulike deler av kloden til en sammenhengende tidsserie for global middeltemperatur.

I 2015 nådde vi for første gang en økning i den globale middeltemperaturen på én grad i forhold til førindustriell tid. Når den globale middeltemperaturen på jorda nå stiger, betyr det at mengden energi inn i klimasystemet øker. Endringer i middeltemperaturen, er altså et symptom på en ubalanse i energibudsjettet.

Global oppvarming innebærer ikke at temperaturen øker like mye for hvert år eller like mye overalt på jorden. Global oppvarming er en gradvis prosess, mens det er store naturlige svingninger i temperaturen fra år til år. For å studere klimaendringer må vi se på trender over lengre tid.

En global oppvarming på én grad krever en stor mengde energi. Det stabile klimaet som har vært en forutsetning for utviklingen av vår sivilisasjon er i endring og selv tilsynelatende små endringer kan få alvorlige konsekvenser for oss.

Det er fortsatt betydelig uenighet om hva som forårsaker oppvarmingen. Energibalansen kan påvirkes av en rekke faktorer som endringer i solstråling, vulkanutbrudd, skyer og andre naturlig variasjon.

Drivhuseffekten

Vi vet imidlertid at en av de viktigste faktorene for klimaet på jorden er drivhuseffekten. CO₂ og andre drivhusgasser har den egenskapen at de fanger opp deler av den utgående varmestrålingen fra jorden og dermed bidrar til at den gjennomsnittlige overflatetemperaturen er 15 plussgrader isteden for 18 minusgrader som vi ellers ville hatt. Øker mengden klimagasser vil gjennomsnittstemperaturen øke.

Vi vet at menneskelig aktivitet produserer klimagasser. Ved å forbrenne fossilt brensel frigjøres solenergien som er bundet i brenselet, men samtidig får vi CO₂ som biprodukt. Den viktigste menneskeskapte klimapåvirkningen er økte utslipp av CO₂-gass. Denne gassen er viktig for planteproduksjon og blir delvis tatt opp i havet og delvis av vegetasjonen, men det som ikke kan tas opp av naturen blir værende i atmosfæren hvor det bidrar til å fange solenergi, noe som gir økt global oppvarming.

Hvordan temperaturen endrer seg framover avhenger i stor grad av hvor mye og hvor raskt vi klarer å redusere våre utslipp av drivhusgasser. Mengden CO₂ i atmosfæren varer i mange hundre år. Derfor vil karbonet vi slipper ut nå fortsette å gi en oppvarmende effekt mange år framover.